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Abstract—Native listener judgements and acoustic compar-
isons are sensitive to deviations between non-native speech and
native productions, but both have drawbacks and are inefficient
for evaluating large databases. To probe whether Support Vector
Machines (SVM) might offer an efficient alternative, we used
three SVM models trained with native Thai lexical tones to eval-
uate new native stimuli and non-native imitations by Mandarin
and Vietnamese speakers. The optimal SVM model categorized
native tones accurately but showed lower accuracy with non-
native imitations, like native judges do, thus confirming its
sensitivity to deviations from native productions. Thai falling tone
imitations yielded the lowest classification accuracy, indicating
that both groups’ imitations were constrained by their native
falling tones. Thai rising tones were better recognized for Viet-
namese than Mandarin imitators, reflecting differences between
their native rising tones. Thus, SVM modeling may provide an
effective alternative to traditional perceptual- or acoustic-based
evaluations of non-native speech.

I. INTRODUCTION

Machine learning classification algorithms allow multiple
acoustic correlates of speech to be modelled across languages.
They have been used to investigate the contribution of acoustic
features to classification of phonetic categories, using native
speaker data to both train and test the models [1], [2]. Machine
learning has also been used to characterize acoustic-phonetic
similarities between languages. A model is trained to classify
native phonetic categories of one language, then used to
classify speech from another language in order to predict how
its listeners will categorize the former language’s phones into
their native systems [3]–[6]. Here we offer a third use of
machine learning in speech research: using models trained on
native speech to evaluate non-native imitations.

Traditionally, human judgements or acoustic comparisons
between native and non-native productions are used for such
evaluations. For example, Wayland in [7] compared Thai
lexical tones in target words produced by native speakers
versus English learners of Thai, using both native listener
ratings and acoustic analysis. Native listener ratings revealed
which tone types were perceived to be strongly non-native
accented, whereas acoustic analysis identified the acoustic
properties that distinguish non-native productions from native
productions. Native perceptual judgements are more holistic
and easier to interpret than acoustic analyses, i.e., higher accu-
racy indicates more target-appropriate productions. However, a
serious pragmatic constraint is that the large number of tokens

generated by an L2 production/imitation study makes it quite
challenging to get multiple perceptual evaluations of all tokens
by each native judge [8]. Thus, human perceptual judgements
are labor-intensive and raise issues of consistency within and
across listeners, speakers and tokens.

In contrast to native perceptual judgements, analysis of
acoustic properties is sufficient for phonetic categories that
can be captured adequately with only one acoustic correlate,
such as voice onset time for consonant voicing contrasts.
Lexical tones, on the other hand, require multiple measures
such as F0 mean, F0 onset and F0 offset values which must
be evaluated via multiple formal models. This makes it difficult
to evaluate overall good or poor performance compared with
native productions, as native judges can do.

Given the complementary limitations of native perceptual
judgments and previous comparisons of cross-language acous-
tic differences, it is desirable to develop more effective ways
to simultaneously consider multiple acoustic dimensions and
produce classification scores that are more analogous to native
listener classifications. Machine learning models trained with
native productions can learn the multiple acoustic character-
istics of those native categories. If non-native productions
closely resemble native productions, native-trained machine
learning models should classify them with high accuracy.
However, the more the productions deviate from the target
items, the lower the classification accuracy should be. In
addition, machine learning models can consistently identify
a large amount of data more efficiently than, and without the
attentional limitations of, human judges.

The present study employed machine learning algorithms to
evaluate the non-native lexical tone imitation data obtained in
[9], [10] and explore the effect of native language influence,
memory load, stimulus talker variability and vowel variability
on imitation. Native language influence was estimated from the
same Mandarin and Vietnamese imitators’ actual perceptual
assimilations of Thai tones to their native tones in previous
perceptual studies [11], [12]. We expected the machine learn-
ing model to detect variations in Thai tone imitation accuracy
by the Mandarin and Vietnamese participants that were in line
with the similarity/dissimilarity they had perceived between
the Thai tone and their native tone categories.

The other factors in our imitation study, memory load and
stimulus variability, are known to affect non-native tone per-



Fig. 1. Time- and Lobanov-normalised [21] F0 contours of Thai, Mandarin
and Southern Vietnamese tones

ception [11], [12] and imitation [9]. The Automatic Selective
Perception model [13] proposes that listeners attend less to
phonetic details in a phonological than phonetic mode of
perception. We reasoned that high memory load should bias
listeners against a phonetic mode of perception because the full
array of phonetic details decay in short-term memory [14],
[15]. High memory load should instead bias them toward a
phonological mode of perception in which they rely more on
abstract phonological patterns and less on specific phonetic
details [16], [17]. Because accurate imitation depends on
retention of the phonetic details of the target, we expected
non-native imitation to be less accurate and more constrained
by native phonology under high than low memory load, and
by high more than by low talker/context variability.

To provide a priori phonetic characterizations of the Thai,
Mandarin and Vietnamese tones, we used Chao values [18],
where F0 height at tone onset and offset, and sometimes an
intervening value for a tone mid-point, are each referenced
by the numbers 1-5 (low to high F0, respectively). Thai (T)
has three level tones: high-level T45, mid-level T33, low-level
T21, and two contour tones: rising T315 and falling T241 [19].
Mandarin (M) has four tones: level M55, rising M35, falling-
rising M214 and falling M51 [18]. The dialect of our Southern
Vietnamese participants has five tones: high-level V44, low-
level V22, rising V35, falling V21, and falling-rising V214,
[20] see Fig. 1.

II. FEATURE SELECTION FOR TONE RECOGNITION

Lexical tones are acoustically represented by their F0 con-
tours [22]. With the presence of a large number of features, a
learning model tend to overfit, resulting in their performance
degeneration when new test data is inserted [23]. Thus, based
on previous phonetic research [24] that best represent the
acoustic lexical tone data, for a given tone, an F0-related
feature vector was used in our tone recognition scheme, which
comprised the following 5 acoustic features:

• F0onset: onset value of F0 contour
• F0offset: offset value of F0 contour, which together with

F0onset characterizes level, rising, or falling tones
• F0mean: mean of F0 contour, which indicates tone height
• F0excursion: the range of nominalized F0 contour, which

distinguishes level tones from contour tones
• F0 maximum location or F0max loc: the peak position

relative to the tone’s duration is measured, which allows
us to distinguish differently timed peaks in convex and
concave.

Other features, such as syllable duration or tone contours
of the neighboring syllables, have been used in some tone
recognition studies [25], [26]. However, we did not select F0
features of neighboring tones because our goal was to build
models that classify monosyllabic Thai tones in isolation and
evaluate non-native imitation of these tones in the same con-
text. We did not aim to build an automatic speech recognition
model to identify Thai running speech, which requires a larger
quantity of training data from many phonetic environments. In
addition, syllable duration was not selected because our focus
was on tone imitation and not on syllable or vowel imitation.
Given that vowel duration is phonologically contrastive in Thai
but neither in Mandarin nor Vietnamese, duration measures
could confound our results in evaluating F0 accuracy in tone
imitations.

III. TONE RECOGNITION BASED ON SVM
A. Multi-class support vector machine classifier

Thai tone recognition is essentially a multi-class classifica-
tion problem, in which a tone category is assigned to a new
data set with specific features. Given a set of L labeled exam-
ples, each data point has two parts: the d-dimensional vector
of the acoustic features, with d = 5, and the corresponding
labels of class:

S = {(xi, yi)|xi ∈ Rd, yi ∈ 1, 2, 3, 4, 5, i = 1, ...,L} (1)

where xi is the vector of data features and, yi is one of the
five tone labels. The SVM maps the d-dimensional input vector
x from the input space to the dh-dimensional feature space
with a non-linear function Φ(·) : Rd → Rdh . The separating
hyperplane in the feature space is defined by

ω · Φ(x) + b = 0, ω ∈ Rdh , b ∈ R (2)

The classifier should satisfy the condition of existence of
both ω and b such that

yi(ω
T · Φ(xi) + b) ≥ 1 (3)

Practically, the data from the five classes are not perfectly
sparse, meaning that the data from neighboring classes in the
hyperspace might overlap each other, which makes a perfect
linear separation impossible. Hence, a restricted number of
misclassifications are tolerated around the margins. The re-
sulting optimization problem for SVM, in which the violation
of the constraints is penalized, is given by:



min
ωm,bm,ξm

1

2
||ωm||2 + C

L∑
i=1

ξmi (4)

subject to

{
yi[(ω

m)T · Φ(xi) + bm] ≥ 1− ξmi if yi = m

yi[(ω
m)T · Φ(xi) + bm] ≤ −1 + ξmi if yi 6= m

ξmi ≥ 0, i = 1, ...,L
(5)

where ξi is the relaxation factor tolerating misclassification,
C is the penalty parameter controlling the tradeoff between
allowing training errors and forcing strict margins, and mth

SVM is trained in the form of a one-against-the-rest approach
(discussed in the next section). Generally, the constrained
optimization problem is referred as the primal optimization
problem, which can be written in the dual space by Lagrange
multipliers αi ≥ 0. The solution should maximize the follow-
ing expression

L(ωm, bm, ψmi , α
m
i ) =

1

2
||ωm||2 + C

L∑
i=1

ξmi

−
L∑
i=0

αmi [yi((ω
m)T · Φ(xi) + bm)− 1]

(6)

The dual problem is given as

max
αm

L(αm) =

L∑
i=1

αmi −
1

2

L∑
i,j=1

αmi α
m
j yiyjK(xi,xj) (7)

subject to

0 ≤ αmi ≤ C,
L∑
i=1

αmi yi = 0 (8)

The kernel function K(xi, xj) corresponds to the inner product
belonging to the transformation space:

K(xi, xj) = Φ(xi)Φ(xj) (9)

Typically, kernel functions can be a radial basis function
(RBF), a linear function or a polynomial function. After solv-
ing all the equations above, we arrive at k decision functions:

(ω1)T · Φ(xi) + b1

...
(ωk)T · Φ(xi) + bk

(10)

The final classification function can be written as

class(xi) = argmaxm=1,...,k[(ωm)T · Φ(xi) + bm] (11)

B. Multi-class classification approach

For the multi-class classification task, we consider it to be
a set of binary classification problems. In this modeling study,
we have followed the one-against-the-rest approach [27]. This
method works by constructing k binary classifiers. The ith

classifier is trained using all positive-labeled examples. All
other examples, regardless of their original valence, are then
negative-labeled. The final output is the class that matches the
classifier with the highest output value.

IV. EXPERIMENT DESIGN

A. Data collection

Native Thai productions from a separate study [28] were
used here with the authors’ permission to build our machine
learning models. 21 Native Thai speakers (13 female and
8 male speakers) were recorded in a sound-treated booth
at Western Sydney University, using a Lavalier AKG C417
PP microphone at the sampling rate of 48 kHz and 16-bit
resolution, as they produced multiple repetitions of each of
the five Thai tones in citation form in five consonant-vowel
syllables (/ma/, /mi/, /mu/, /na/, /ni/, /nu/ × 5 tones × 2-6
repetitions, 810 tokens in total).

The native Mandarin (n = 32) and the Vietnamese (n = 32)
speakers from [12] also participated in the imitation experi-
ment. Each language group was divided evenly into the low
and high memory load conditions (Mandarin: low, Mage =
26.6 yrs, SD = 7 yrs, 10 females; high, Mage = 26.0 yrs, SD
= 6.9 yrs, 10 females; Vietnamese: low, Mage = 24.4 yrs, SD
= 7.7 yrs, 13 females; high, Mage = 27.2 yrs, SD = 12.8,
12 females), which differed in the interval between the offset
of the stimulus and the signal to produce the imitation (low:
500 ms vs. high: 2000 ms). The Thai stimuli were presented
in variable blocks with two talkers and/or two vowels and in
constant blocks with just a single talker and vowel. The blocks
were presented in random order.

Mandarin and Vietnamese participants were recorded in-
dividually in testing booths at Western Sydney University,
University of New South Wales and Macquarie University.
The target stimuli (five Thai tones each for the syllables /ma:/
and /mi:/) were presented from a Dell Latitude 7280 laptop
running E-Prime via Sennheiser HD 280 pro headphones at 72
dB SPL. The imitations were recorded with a portable digital
speech recorder (ZOOM H4n) with 41 kHz sampling rate and
16-bit stereo format. Participants were instructed to imitate the
tones as faithfully as possible after they received the signal to
respond. Each participant completed 160 imitation trials (5
tones × 2 syllables × 2 tokens × 2 talker variability × 2 vowel
variability × 2 repeats) in total. Before the test session, they
received 10 practice trials, with stimuli not used in the test.

All syllables were annotated and analyzed using the Praat
script ProsodyPro [29], which was used to measure syllable
duration and 10-equidistant points of F0 values (in Hz). The
most stable part of the normalized tone (points 2 to 9) was
used to calculate all F0-related measures. Those eight raw
F0 values per imitation token were normalized by speaker



using the Lobanov method [21], which reflects how much
an F0 value for a tone varies from the mean F0 of the
speaker. This normalization process renders raw F0 values
comparable among different speakers. As noted earlier, the
acoustic measures we calculated for use in model training and
evaluation of imitations were F0onset, F0offset, F0mean, F0excursion
and F0max loc.

B. Training set sampling method

To train the SVM models with Thai native tones, native
Thai tone dataset was shuffled randomly and partitioned into
three disjoint sets of equal size, 2/3 set as training dataset and
1/3 set as testing dataset.

Given the small size of dataset and to give an unbiased es-
timate of the performance, the k-fold cross-validation method
was also employed, in which every sample can be allocated
in the testing set once and the variance of results is reduced
as k increases [30]. The training algorithm must be rerun
from scratch k times, but since we were applying SVM to
a small dataset, the computation involved was modest. In our
experiment, we performed a ten-fold cross-validation (CV).

C. Tone recognition and evaluation

The kernel functions RBF, linear and polynomial were
each applied to work along with the SVM. The penalty
parameter was set C = 1.5. The experimental results are
shown in Table I. The 10-folded cross validation shows that
the SVM model with the RBF kernel function showed the
best performance in native Thai tone recognition, and the
low variance tells us that the current experiment setting is
unlikely to result in overfitting. Therefore, we chose that model
to evaluate non-native imitation of tones by Mandarin and
Vietnamese imitators. The overall average accuracies for the
non-native imitation data are 66.5%, 70.5% and 69.6% for the
SVM models with the polynomial, RBF and linear kernels
respectively. Fig. 2 indicates variations in the performance of
the RBF kernel SVM model over the five tone types for native
Thai tone recognition. T315 was recognized with the lowest
accuracy relative to other Thai tones. Fig. 3 indicates variations
of the same model’s performance over the five tone types for
non-native imitation by Mandarin and Vietnamese imitators.

Assuming that this SVM model applied the same objec-
tive standard in identifying non-native tone categories as in
identifying native tones, lower accuracies in recognizing non-
native imitations reflect deviations of non-native imitations

TABLE I
ACCURACIES OF MODELS AND DATA

POLYNOMIAL RBF LINEAR
Thai 88.8 94.7 87.2
10-folded CV 87.1±1.0 93.2±1.2 85.1±1.8
Mandarin 66.2 68.9 68.3
Vietnamese 66.7 72.1 70.9
Non-native overall 66.5 70.5 69.6
a Mean accuracies (%) of native-Thai-data-trained models and

their accuracies in classifying Mandarin and Vietnamese data.
10-folded CV with means and standard deviations.

Fig. 2. Confusion matrices for native Thai tone productions as classified by
RBF-based SVM model.

Fig. 3. Confusion matrices for Thai tone imitations by Mandarin (left) and
Vietnamese imitators (right) as classified by the RBF-based SVM model.

from native productions. Thus, we calculated accuracy scores
for each participant on each tone in each imitation condition
as a measure of imitation performance. Then we carried out
statistical analysis typical in psycholinguistic research to reveal
the effects of native language, memory load and stimulus vari-
ability on non-native imitation. SVM identification accuracies
were modeled as dependent variables for a linear mixed-effects
model with participants as a random effect. Native language
(Mandarin vs. Vietnamese) and memory load (low vs. high)
were the between-subject fixed factors, whereas tone type (five
Thai targets), target stimulus talker variability (constant vs.
variable) and vowel variability (constant vs. variable) were
the within-subject fixed factors. To calculate the p-values for
the fixed effects, we used the Kenward-Roger approximation
to degrees of freedom [31], and the Anova function from the
car package in R, with test specified as “F”. The significance
level was set at .05.

There was only one main effect, i.e., tone type (F(4,1112) =
22.84, p < .001) and three two-way interactions all involving
tone type, i.e., language group × tone type (F(4,1113) =
6.15, p < .001), memory load × tone type (F(4,1113) =
6.12, p < .001), target stimulus talker variability × tone type
(F(4,1112) = 20.68, p < .001); and a three-way interaction
language group × memory load × tone type (F(4,1113) =
2.78, p = .02). We conducted multiple comparisons with
Tukey adjustments to break down the main effect of tone



type (see Table II). T315 imitations (MT315 = .81) were
classified significantly better than those of other Thai tones
(MT33 = .67, MT45 = .73, MT241 = .64, MT21 = .74).
T241 imitations were classified significantly worse than those
of other Thai tones. T33 imitations were classified significantly
worse than those of T21 and T45.

For all two-way and three-way interactions that involve tone
types, only significant differences between other factors/levels
for the same tone type are reported here. For the language
group × tone type interaction, we found that Vietnamese
imitations of T315 (M = .87) were better classified than
Mandarin imitations (M = .75), β = −.12, SE = .03,
t(243) = −3.56, p = .01.

For the memory load × tone type interaction, there were
no differences between the two memory loads for the same
tone type. For the target stimulus talker variability × tone type
interaction, the classification accuracy for T241 imitations was
lower in constant (M = .52) than variable (M = .76) talker
blocks, β = .24, SE = .03, t(1112) = 8.72, p < .001. For
the language group × memory load × tone type interaction,
there were no differences between other factors/levels for the
same tone type.

V. DISCUSSION

First, the Thai-trained SVM model produced lower classi-
fication accuracy on non-native tone imitations than on native
productions, indicating that it was sensitive to the acoustic de-
viations of the non-native imitations from native productions.
T241 imitations yielded the lowest classification accuracy
overall, across language groups. These same Mandarin and
Vietnamese participants had shown a Categorized assimilation
of T241 to their native falling tone M51 and level tone V44,
respectively, which both differ in contour from T241 [11],
[12]. Thus, the poor T241 imitations by the two groups can
be attributed to the influence of their native tones.

Second, classification accuracies did not differ overall be-
tween the two language groups, suggesting that global dif-
ferences between their native lexical tone systems in number
and types of tones did not affect general ability to imitate non-
native Thai tones. However, language backgrounds did interact
with specific tone types, with multiple comparisons showing

TABLE II
ACCURACIES OF MODELS AND DATA

Tones β SE df t p
21− 33 0.07 0.02 1113 3.56 0.004*
21− 45 0.01 0.02 1112 0.57 0.980
21− 241 0.10 0.02 1113 5.32 <.001*
21− 315 -0.07 0.02 1111 -3.46 0.005*
33− 45 -0.06 0.02 1112 -2.99 0.023*
33− 241 0.03 0.02 1112 1.74 0.411
33− 315 -0.13 0.02 1113 -7.00 <.001*
45− 241 0.09 0.02 1114 4.74 <.001*
45− 315 -0.08 0.02 1112 -4.02 0.001*
241− 315 -0.17 0.02 1113 -8.76 <.001*
a Pairwise comparisons (with Tukey adjustments) among

imitation tone types. Significant findings (p < .05) are
marked with asterisk.

language group differences for imitations of the same Thai
tone, T315. T315 was better recognized when imitated by the
Vietnamese, who had perceptually assimilated it as clearly
Categorized to V214, than by the Mandarin participants,
who had instead perceptually assimilated it as Uncategorized
and split between M35 and M214 [11], [12]. Strong native
language influences in perceptual assimilation of particular
non-native Thai tones thus appear to affect imitation of those
tones, as we predicted.

In addition, SVM model misidentification patterns for the
imitations, as shown in Fig. 3, also indicate native language
influences. For example, Mandarin imitations of T45 and T315
were most often misclassified by the Thai-trained models,
which may be related to the Mandarin participants’ perceptual
assimilation of T45 as Categorized to M35, but also as
assimilated to M214 with a lower percent choice [11]. On
the other hand, their assimilation of T315 was Uncategorized,
split more evenly between the very same two Mandarin tones,
M35 and M214. This overlap in the Mandarin participants’
assimilations of both T45 and T315 to the same two native
tones appears to have affected their imitations of the two Thai
tones. In addition, their previous perceptual assimilations of
T21, T33 and T241 had also overlapped for two Mandarin
response categories, M55 and M51, consistent with the SVM
model’s error response patterns to the imitations of these Thai
tones, as shown in Fig. 3.

For Vietnamese participants, T45 and T315 had also over-
lapped in their perceptual assimilation to the native tone
V214 [11], [12]. This may similarly explain why Vietnamese
imitations of these two tones were confused by the SVM
model. In addition, these participants had assimilated T241
and T33 with overlap in their native tones V44 and V22,
and had assimilated T21 and T33 with overlap in V22. Thus,
Vietnamese imitations of T241, T21 and T33 were treated by
the machine learning model as more similar to each other than
any of them were to T45 and T315.

Third, target stimulus talker variability, but not vowel
variability, affected the SVM classification of the relevant
imitations. However, imitation of T241 was acoustically more
accurate in variable than constant talker blocks, the opposite
pattern from our expectations. A possible psycholinguistic
explanation for this discrepancy is that T241 is phonetically
rising-falling and does not have phonetically similar counter-
parts in either Mandarin or Vietnamese. Thus, the phonetic
details of T241 are both more complex and more unfamiliar as
a phonetic contour to both non-native groups than other tones
are. We speculate that in variable talker blocks, the varying
phonetic details of these tokens forced the listeners to abstract
the final falling contour from the T241 stimuli, which is more
familiar as it is analogous to their native falling tones. On the
other hand, in constant talker blocks, the imitators could focus
on the specific phonetic details of each T241 stimulus token
including the initial rise. Thus, they seem to have abstracted
the general final falling contour of T241 in variable talker
blocks, but to have gotten lost in the unfamiliar phonetic
details of the T241 contour in constant talker blocks.



In conclusion, SVM models do appear to provide an ef-
ficient alternative approach to human perceptual judgements
and acoustic comparisons for evaluation of non-native pro-
ductions of lexical tones, and thus could provide feedback to
learners. Classification results of these models are consistent
with expected native language influences on non-native tone
imitation, as interpreted in light of the perceptual assimilation
patterns for those same tones by the same participants in
our earlier studies. Additionally, talker variability can bias
listeners to attend to phonological, i.e., more abstract, or
phonetic, i.e., more detailed, levels of information, which
in turn affects their non-native imitations. Machine learning
models based on multiple dimensions of phonetically-relevant
acoustic information could also be extended to evaluate non-
native imitations of consonant and vowels in future research.
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